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Friction on a Spinning Piece of Matter
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In our Universe rotating motion, contrary to translational motion, is defined
absolutely. I examine some physical consequences of the existence of absolute
rotation. One of them is a resistive torque on a rotating piece of dielectric
induced by the scattering of the fluctuations of the QED vacuum. This torque
rests on the estimation of the emission of angular momentum by a wave scat-
tered by a rotating dipole. This phenomenon per se could also yield a method
for cooling the rotational degrees of freedom of molecules.
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One of the simplest dynamical systems is a piece of matter rotating at
constant angular speed. Surely its image was in the minds of those who
began to think about the various possible motions to emerge in the world,
be it at large scales in the Ptolemaic explanation of the trajectories of
celestial bodies or in the oscillations of a pendulum. To understand the
oscillations of a pendulum Newton did not use sine or cosine functions,
but rather their kinematic representation by projecting onto the line cir-
cular motion at constant speed. In this homage to Mitch Feigenbaum, I
present some variations on the physics of the rotating motion, even though
the underlying dynamics are far more trivial than the beautiful and fasci-
nating structures Mitch Feigenbaum uncovered in his famous work.

Newton in his particularly well thought out introduction to the Prin-
cipia makes a very thorough distinction between translation at constant
speed, which cannot be detected in vacuo in a comoving frame and rota-
tion at constant angular speed, which can be detected(8) by looking at the
curvature of the surface of a liquid at rest in its rotating frame. This deep

Laboratoire de Physique Statistique de l’Ecole normale supérieure, 24 Rue Lhomond, 75231
Paris Cedex 05, France; e-mail: pomeau@math.arizona.edu, pomeau@lps.physique.ens.fr

1083

0022-4715/05/1200-1083/0 © 2005 Springer Science+Business Media, Inc.



1084 Pomeau

remark made me think about other possibilities of detecting absolute rota-
tion and possible consequences of it.

The physical world is such that absolute rotation exists. Therefore one
may expect that a rotating object should come back to rest spontaneously
because it makes an excited state that should decay – in the quantum sense
– to the ground state. This depends of course on the full system: the rotat-
ing piece of matter and the rest of the Universe make a single system by
their interaction. Consider a rotating piece of dielectric interacting with the
‘Universe’ seen as the QED (quantum electrodynamic) vacuum at zero tem-
perature (see remarks at the end on the finite temperature case). The natural
question to ask is: Does the interaction between the QED vacuum and the
rotating dielectric yield some sort of friction, a kind of irreversible Casimir-
like force? The existence or not of such ‘quantum braking’ – to use the same
terminology as in ref. 2 – relies on a rather long chain of arguments that
I shall summarize below. A first difficulty with this idea is that it seems to
show a direction of time, in apparent contradiction with the time reversal
symmetry of the laws of physics. The link between macroscopic irreversibil-
ity and microscopic reversibility is a difficult question, and I shall try to
limit myself to the simplest possible considerations.

This paper is organized as follows. I derive first the formula of the
torque radiated by a time dependent electric dipole. Indeed there is noth-
ing new there and the final result can be found in Landau and Lifshitz’s
classical theory of fields.(3) However Landau’s expression is related implic-
itly at least to the torque generated by the emission of an EM (electro-
magnetic) wave by a rotating permanent dipole. Therefore I shall detail
this calculation for the scattering of an EM wave by a rotating dielectric,
a physical situation different of the one of a rotating permanent dipole
and which does not seem to have been considered before. Then I use this
formula of the radiated torque to evaluate the damping by the scattering
of the fluctuations of the QED vacuum. This requires some rather crude
approximations, in particular because the starting point is purely classi-
cal (non-quantum) although the final result is a purely quantum effect.
This is in line with estimates of the order of magnitude of the Casimir
effect which can be done classically until the very end when the magni-
tude of the fluctuations of the EM field is found by using the rules of
quantum mechanics.(6) Then I consider another physical situation where
this phenomenon of radiation of torque is relevant, namely what happens
when the incident EM field is a classical light beam. This gives a way, at
least theoretically, for cooling rotating objects by radiating their angular
momentum. Indeed, if the object under consideration is a molecule, taking
it as classical rigid rotator with polarization coefficients is not fully justi-
fied because one should take into account quantum selection rules for the
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interaction between the radiation and the molecule. I plan to come back
to this question in a future publication.

The starting point, as for any Casimir-like effect, is to compute the
resistive torque exerted on a rotating piece of dielectric for each individual
mode of the classical EM field. This torque is proportional to the square
of the amplitude of the electric field; the rules of quantum mechanics are
such that the average value of this square is not zero in the ground state
or ‘QED vacuum’. This first step relies on the properties of the scatter-
ing of an incident EM wave by the rotating dielectric. The sought after
effect is the flux of angular momentum in the scattered wave field; this
flux, if it exists, has to be balanced by a torque on the rotating scatterer.
This torque is derived from the balance of angular momentum. Physi-
cally it would come from the interaction between the radiated wave and
the rotating dipole. But this step is no more necessary there than when
computing the Lorentz–Dirac friction on an radiating dipole. The force,
as the torque, is derived from what is radiated at long distance by using
the general property of balance of linear and/or angular momentum. Con-
sider an EM wave incident on a rotating dielectric. The calculation of the
friction torque is inspired by a calculation(7) of the friction force by the
zero-point fluctuations in quantum condensed state at zero temperature.1

The zero-point fluctuations of the EM field have on average all possible
symmetry properties associated with the Lorentz and rotational invariance.
These vacuum fluctuations form the incoming state before scattering by
the rotating dipole. On average the vacuum fluctuations have no angular
momentum before scattering, but they do after. Since the scattering prob-
lem must be solved in a non-rotating frame, the scatterer is time dependent
too. Therefore, if the angular frequency of the incident wave is ω, after
scattering it becomes ω±n�, where � is the angular speed of rotation and
n a positive integer.

The flux of angular momentum far from the scatterer is derived by
integration of the torque generated by the Maxwell tensor. I shall rely on
results and notations of Jackson’s book on classical electromagnetism,(1)

quoted simply as ‘Jackson’ later on. The starting point of this calculation
of the radiated torque is the formula (9.18) in Jackson (Eq. (2) below).
This yields the electric field of an electric dipole depending periodically on
time without any approximation. Let P(t) be this dipole, boldface being
for vectors. Its time-dependent behaviour is assumed to be harmonic, like

1In quantum condensed phases the zero-point fluctuations are usually called quantum deple-
tion. They represent a small effect in Bose–Einstein condensates in dilute vapours, but 80%
of the mass in the ground state of superfluid liquid Helium.
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P(t)= 1
2

(
P̂eiωt + P̂∗e−iωt

)
. (1)

This assumes a single Fourier component. As usual, the quantity denoted
as P̂ is a vector with complex-valued components, not time-dependent,
and P̂∗ is its complex conjugate. The quantities multiplying complex expo-
nential as eiωt will be denoted with a hat. Quantities without hat are real
and have a direct physical meaning, their relation to the hatted quantities
being as in (1). Actually I shall need more than one Fourier components,
but this does not have to be taken into account explicitly at this stage. The
EM field obeys the Maxwell equations, and it has the wavenumber k= ω

c
, c

being the speed of light. Furthermore let the dipole be located at r = 0.
According to Jackson (equation 9.18) the electric field of this dipole is:

Êdip =k2 eikr

r

[
P̂−n(n · P̂)

]
+
[
3n(n · P̂)− P̂

]( 1
r3

− ik

r2

)
eikr , (2)

where n = r
r
. This neat expression includes the familiar field of a static

dipole which behaves like 1
r3 . The other formula in Jackson I’ll need is the

flux of angular momentum at infinity from the dipole. This flux depends
on the term which behaves like r−2 in the large distance expansion of the
right hand side of Eq. (2). On contrary the terms entering the various
cross sections and that depend on the scattering amplitude depend on the
coefficient of the first term, behaving like r−1 at large r. Let Tij be the
(ij) component of the Maxwell stress tensor, i and j referring to Carte-
sian coordinates. This tensor is related to the EM field by the formula:

Tij = 1
4π

[
εEiEj +µHiHj − 1

2
δij

(
εE2 +µH 2

)]
. (3)

In this expression, Ei is the i-component of the electric field and Hj the
j -component of the magnetic field. Moreover δij is the Kronecker delta,
equal to 1 if i = j and to zero otherwise. Finally ε is the electric permit-
tivity of the medium (here the vacuum) and µ its magnetic permittivity.
According to the results of Exercise 6.10 in Jackson, the flux of angular
momentum Q is a vector such that its component j has the expression:

Qj = ejklniTikrl,

with the convention of summation over the repeated indices. The defini-
tion of Qj implies three summations, over the indices i, k and l, ejkl being
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the fully antissymmetric Levi–Civita tensor. The physical meaning of Q is
that by mutiplying it by the element of area of a surface with unit nor-
mal n one gets the total flux2 of angular momentum across this surface.
Therefore the total loss (or gain) of angular momentum by radiation per
unit time is obtained by integrating this flux all over a sphere surrounding
the dipole. Using the expression of the stress tensor in Eq. (3), one obtains
for Q:

Q= ε

4π
(n · Êdip)Ê∗

dip × r. (4)

In Eq. (4), the symbol × denotes the vector product. The contribution of the
magnetic field has been neglected, a realistic approximation in most cases,
where the magnetic contribution to scattering is negligible compared to the
one of the electric field. Furthermore Ê∗

dip is the complex conjugate of Êdip
assuming that the physical electric field E is a sum of periodic functions of
time as 1

2

(
Êeiωt + Ê∗e−iωt

)
. Each Fourier component of Edip yields a con-

stant (in time) contribution to Q that is given by the Eq. (4), a sum over all
frequencies being implied. From Eq. (2), the vector product Ê∗

dip × r has the
following expression for each frequency component of the scattered field:

Ê∗
dip × r = e−ikr

(
k2

r
− 1

r3
− ik

r2

)
P̂∗ ×n.

The scalar product n · Êdip(n = r
r
) has the value:

n · Êdip =2(r · P̂)eikr

(
1
r3

− ik

r2

)
.

Combining the two, one gets the following equation for Q:

Q=2k2
[

ik

r2
P̂×n(n · P̂∗)− ik

r2
P̂∗ ×n(n · P̂)

]
. (5)

A significant remark is that the part of Q that is independent of time
depends on r as 1

r2 . Therefore the total flux across a large surround-
ing sphere is constant, independent of the radius of the sphere r as

2Rigorously speaking, Q is not a flux per se, since the flux of a vector should be a tensor
independent on n. Q is a flux in the direction of n. I shall not use this rather cumbersome
wording but rather say that Q is the flux of angular momentum.
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expected. This radiated angular momentum is the average value on the
sphere (namely over all possible orientations of n) of Q. This average value
is

〈Q〉= 4ik3

3r2
P̂× P̂∗.

The total flux across the large sphere (a torque) is 4πr2 times this average,
namely3:

� = 16iπk3

3
P̂× P̂∗. (6)

The Eq. (6) shows that a dipole that stays oriented in the same direc-
tion does not emit any angular momentum, because then P̂ and P̂∗ are
parallel and P̂ × P̂∗ is zero, a result to be expected. This shows too, indi-
rectly at least, the need for a rotation of the dipole to radiate angular
momentum. The last step in this calculation is to compute the vector
product P̂ × P̂∗ when the dipole strength comes from the response of the
rotating dielectric to an incident plane EM wave.

Let us write the general expression of the electric dipole P induced
in the linear approximation by an external electric field E when the wave-
length of the EM field is much larger than the size of the piece of dielec-
tric. This last approximation makes the calculation tractable. Otherwise it
would require either a numerical approach or a Born-like approximation.
For an arbitrary orientation of the dielectric, the linear relation reads in
coordinate form:

Pi =AijEj . (7)

In this equation, Aij is a rank two tensor that is attached to the dielectric
(it has the physical dimension of a volume with our units). If this dielectric
rotates, one must rotate A as well. For an ellipsoidal dielectric of uniform
permittivity, the equations for the electric field and the polarization can be
solved explicitly.(5) Let (X,Y,Z) be the coordinate system attached to the
ellipsoid, such that the Cartesian equation of its surface is

X2

a2
+ Y 2

b2
+ Z2

c2
=1

3A closely related expression is in the equation (9.98) of ref. 3.
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In this coordinate system the dipole induced by an uniform external field
E has the X component:

PX =AXXEX, (8)

where

AXX = abc

3
[

ε
ε1−ε

+m(X)

] ,

ε1 is the permittivity of the piece of dielectric and ε the one of the outside
medium (practically the vacuum there). Furthermore, the quantity called
m(X) is, up to a multiplicative constant, an elliptic integral:

m(X) = abc

2

∫ ∞

0

dζ

(ζ +a2)R(ζ )
,

where R(ζ )=
√

(ζ +a2)(ζ +b2)(ζ + c2). In this frame of reference, the polar-
ization tensor is diagonal (but not proportional to the identity!), and any
other component of P can be derived from Eq. (8) by index permutation. To
make things simpler, I consider the case of a piece of dielectric with an axis
of rotational symmetry, the Z-axis, along the unit vector N. This unit vector
is attached to the dielectric and, in general, the rank two tensor Aij is the
sum of a tensor αNiNj and an isotropic part βδij , where α and β are two
scalars (independent on the orientation of the dielectric). For this symmetric
ellipsoid α and β can be found by considering first an electric field perpen-
dicular to the axis of symmetry, that gives β =AXX =AYY and then a field
along Z,that gives α=AZZ − 1

2 (AXX +AYY ). The source of time dependence
in the polarization is twofold: first it comes from the time-dependent electric
field E, then from the rotation of the dielectric through the rotation of the
unit vector N . This is made obvious from the expression of the polarization
valid in the axissymetric case:

P=α(N ·E)N +βE. (9)

I shall no longer consider the last term which comes from the isotro-
pic part of the polarization tensor, since it does not contribute to the
torque. The rotation is with the angular velocity � around the z-axis in
the fixed coordinate system. There are two more vectors involved: the vec-
tor defining the axis of polarization of the electric field in the incident



1090 Pomeau

wave, assumed to be linearly polarized, and the unit vector N, the latter
being a function of time. The case of a perfect conductor, although phys-
ically very different, would yield too a relation between the external field
and the induced dipole formally identical to the one given in Eq. (9) for
an axissymetric piece of dielectric.

I continue the calculation in the fixed frame of reference where the coor-
dinates are (x, y, z). Let θ be the constant angle between the rotation axis and
N, and let Ex sin(ωt) and Ez sin(ωt) be the Cartesian components of E in the
fixed coordinate system. The time-independent vector of components Ex,Ey

will be denoted as Ẽ. It represents the electric field of the incoming wave, but
for the sine factor sin(ωt). The Cartesian components of N are

Nx = sin(θ) cos(�t), (10)

Ny = sin(θ) sin(�t), (11)

and

Nz = cos(θ). (12)

The Cartesian components of the polarization P are:

Px =α (N ·E)Nx = α sin(ωt) sin(θ) sin(�t)

× [Ex sin(θ) sin(�t)+Ez cos(θ)] . (13)

This is equivalent to

Px = α

4
Ex sin2(θ) [2 sin(ωt)− sin(ω+2�)t − sin(ω−2�)t ]

+α

2
Ez sin(θ) cos(θ) [cos(ω−�)t − cos(ω+�)t ] . (14)

There is a parallel expression for the y-component of P:

Py =α (N ·E)Ny = α sin(ωt) sin(θ) cos(�t)

× [Ex sin(θ) sin(�t)+Ez cos(θ)] . (15)
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This can also be written as

Py = α

4
Ex sin2(θ) [cos(ω−2�)t − cos(ω+2�)t ]

+α

4
Ez sin(θ) cos(θ) [sin(ω+�)t + sin(ω+�)t ] .

The z-component of P is written below for the sake of completeness,
although it does not contribute to the torque:

Pz =α (N ·E)Nz = α sin(ωt) cos(θ)

× [Ex sin(θ) sin(�t)+Ez cos(θ)] . (16)

The shifted frequencies ω ±� and ω ± 2� already show-up in the expres-
sions for Px and Py . This shows the change of frequency due to the rotation
of the dipole. Now one has to insert those expressions of the components
of the polarization vector into the radiated torque given in Eq. (6). This
requires that all time dependent quantities be written as sum of complex
exponentials, and then to use the Eq. (6). The only non-zero component of
the resistive torque is along z, the axis of rotation. It is

�z = 16iπk3

3

(
P̂xP̂

∗
y − P̂yP̂

∗
x

)
.

In this expression of �z one implicitly includes a sum over all possi-
ble Fourier components, each one with a frequency-dependent prefac-
tor 16iπk3

3 . Four different frequencies are involved in the final result:
ω − 2�, ω − �, ω + � and ω + 2�. The identity P̂xP̂

∗
y − P̂yP̂

∗
x =

i
2

(
Pc,xPs,y −Ps,xPc,y

)
make the calculation slightly easier, where Ps,x is

the real coefficient of the sine function like sin(ω+�)t in Px , etc. The final
result is the following expression for the resistive torque along the axis of
rotation:

�z = α2 E2
x

6c3
sin4(θ)

[
(ω−2�)3 − (ω+2�)3

]

+α2 2E2
z

3c3
sin2(θ) cos2(θ)

[
(ω−�)3 − (ω+�)3

]
. (17)

This equation shows that, without rotation, there is no torque: �z is
equal to zero if � is zero. More generally, the resistive torque is an odd
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function of �. In the limit ��ω, �z has the following limit form4:

�z =−2α2E2
x

c3
sin4(θ)ω2�− 4α2E2

z

c3
sin2(θ) cos2(θ)ω2�. (18)

The coefficient of polarization α has been taken as independent on the
frequency. Such a dependence could be taken into account at least for-
mally. The torque given in Eq. (18) is proportional to the square of the
incoming electric field. Therefore one may expect that such a torque would
come from the scattering of the quantum fluctuations of the QED vac-
uum: the mean value of a quantity proportional to the square of a quan-
tum fluctuation is not zero in general, as the existence of the Casimir
effect clearly shows. The order of magnitude of this effect is obtained by
adding the contributions of all modes of fluctuation of the QED vacuum,
seen here as defining the amplitude of an incoming wave. I shall not try
to make a detailed calculation of this effect, and give order of magnitude
estimates only. The contribution of a mode of frequency ω to |E|2 is of
order �ω

2V
, where V is the volume of the system. In the frequency interval

[ω,ω + dω] the number of modes of the EM field is 8πV ω2dω

c3 . Therefore
in the limit � small the sum of all contributions to the resistive torque
is �C ∼ �

∫∞
0 dωα2 �ω5

2c3 where the subscript C is for ‘Casimir’. Taking α

to be a constant makes this expression diverge massively in the large fre-
quency/short wavelength domain. Two physical length scales are there to
cut-off this divergence at short distance: first the polarization α tends to
zero as the wavelength tends to zero. The typical length scale involved is
the wavelength of the EM waves at frequencies of the order of the plasma
frequency of the material, with the electron density taken with all the elec-
trons in this material. This is a very short wavelength at the usual densities
in condensed matter, typically in the UV or even X-ray range. In the pres-
ent problem, where I assumed that the rotating piece of dielectric is much
bigger than the wavelength of the incoming EM wave, this is not the rele-
vant short range cut-off. The physical cut-off comes from this assumption:
if the wavelength of the incoming EM wave is of the order of or shorter
than the size of the dielectric one cannot assume anymore a simple rela-
tion like in (9) between the incoming field and the polarization. Therefore,
at least as far as the domain of validity of the present theory is concerned,
one must limit its application to wavelength that are larger than or of the

4This expression could be written in a geometrically covariant form by using dot products of

the three vectors involved, namely N, Ẽ and �, by writing E2
x = Ẽ2 − (�·Ẽ)2

�2 , E2
z = (�·Ẽ)2

�2 and

cos2(θ)= (�·N)2

�2 . However the final result is not obviously simpler than Eq. (18).
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same order as the size of the rotating dielectric. The approximate value of
the resistive torque �C due to the long wave fluctuations of the QED vac-
uum is found by limiting the diverging integral to waves with a wavelength
larger than or on the same order as the length of the rotating dielectric:
|ω|� 2πc

l
, l being the length of this piece of dielectric. Assuming further-

more that it has a finite aspect ratio, one finds that α∼ l3. Putting all these
estimates into the expression of the resistive torque, one gets the very sim-
ple estimate �C ∼��, quite a large effect even for objects noticeably bigger
than a molecule.

Another possible consequence of this resistive torque could be the
damping of the rotation of molecules with a rod-like or disc-like shape. By
shining a light beam on the molecule one would bring its rotation to rest.
This could be a way of cooling a molecular gas, provided the cooling of
the rotational level by this process is efficient enough to overbalance any
heating of the vibrational and/or translational degrees of freedom by the
same light beam. There should also be enough exchange with the other
degrees of freedom to make this cooling efficient for all of them. Let us
estimate the order of magnitude of the efficiency of this cooling. The order
of magnitude of the resistive torque is �ω2d2

c3 , where d is the magnitude
of the electric dipole induced by the external field. If this resistive torque
slows down a rotating molecule of moment of inertia I , the typical decay
time for the rotation will be τ ∼ Ic3

ω2d2 . One can check the coherence of
this order of magnitude estimate, since d2 has the physical dimension of
an energy times a length cube. To estimate d, the magnitude of the dipole
induced by the incoming EM wave, I notice that an electric field on the
order of E0 – one volt per Angstrom – would yield an electric dipole erB,
where e is the charge of the electron and rB the Bohr radius, E0 being of
course the electric field inside a Bohr atom. Assuming now that the elec-
tric dipole is proportional to the incoming field, one obtains d ∼ erB

E
E0

.
The order of magnitude of the moment of inertia I is Mr2

B, M being the
mass of the molecule, much larger than the mass of the electron. Intro-
ducing the electron mass explicitly together with the fine stucture constant

αe = e2

�c
, one obtains τ ∼ M

m
αe

rB

c

ω2

(
E0
E

)2
. The combination αe

rB

c

ω2 is the fre-
quency of the Bohr atom, ωB. Combining all this one obtains the compact
expression:

τ ∼ M

m

ωB

ω2

(
E0

E

)2

.

To give an idea of the order of magnitude of this relaxation time, one can
take ω ∼ωB. This amounts to a period of the incident wave in the range
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of 10−14 s. The final value is very sensitive to the value of E. An electric

field of 100 V/cm, that does not seem to be unrealistic, yields
(

E0
E

)2 ≈1012

and finally τ in the 10–100 s range. This estimate could be refined in a spe-
cific example. In particular the magnitude of the induced dipole could be
increased by taking an incoming light close to an absorption line of the
molecule. As far as I am aware this method of cooling rotational degrees
of freedom has not been proposed in the literature. It is not even clear
that this resistive torque has ever been considered, at least for the case of a
dipole induced by scattering, instead of the more obvious case of a rotat-
ing permanent dipole.

To conclude I address a rather intricate question. From the calcula-
tion presented, one could get the (wrong) impression that the interaction
between an EM wave and a dipole always leads to decay of the rotational
degrees of freedom of this dipole. Indeed any wave incident on the dipole
can be decomposed into a sum of plane waves and, by scattering, each
plane wave seems to take out some angular momentum. In particular this
would rule out the relaxation to thermal equilibrium of a dipole interact-
ing with black-body radiation at a finite temperature: if one assumes that
the only degree of freedom of this dipole is rotational, and if scattering
always takes out angular momentum, one would have realized an anti-
Carnot engine, putting the energy of the rotator irreversibly into a single
thermal bath. The way out of this apparent paradox is that the radiation
field can have incoming and outgoing angular momentum. There is some
incoming angular momentum whenever the EM wave is circularly polar-
ized. Of course in black-body radiation this incident wave is circularly
polarized at random, fluctuating constantly from one polarization sign to
the other. Nevertheless, there is an instantaneous state of circular polar-
ization. Suppose the dipole is a rest (it does not rotate), and that it is
submitted to an incoming circularly polarized wave. This wave will induce
a polarization of the dipole. By an effect similar to the one discussed
in reference,(4) the retardation between the polarization and the polariz-
ing field will be such that the cross product P × E (that is the torque on
the dipole) is not zero on average. This yields a non-zero constant torque
due to an incident circularly polarized wave. For black-body radiation this
yields a fluctuating torque. If the frequency of the average radiation in the
black-body radiation is far higher than the inverse mechanical response
time of the rotating dipole, this fluctuating torque may be considered as
a white Gaussian noise. The resistive torque that was just computed for
the QED vacuum can be generalized to the damping by black-body radi-
ation. This damping yields the resistive torque in a Langevin-like theory
of the motion of a rotator. The fluctuating Langevin ‘torque’ balances the
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resistive torque in such a way that the statistical distribution of the angu-
lar speed of the rotating dipole is a Boltzmann distribution at the same
temperature as the black-body radiation. To prove that this represents well
the torque fluctuations is a rather complicated matter and I refer the inter-
ested reader to a forthcoming publication on this.

ACKNOWLEDGMENTS

It is a pleasure to thank David Roberts who has been patient enough to
hear preliminary thoughts on the idea exposed in this paper and also to
correct very carefully a first draft. I take also this opportunity to congratu-
late Mitch Feigenbaum on the occasion of this celebration and I wish him
many more fruitful years.

REFERENCES

1. J. D. Jackson, Classical electrodynamics, 2nd Ed. (Wiley, New York, 1962).
2. R. Lopez-Ruiz and Y. Pomeau, J. Phys. A 28:L255–L259 (1995); Y. Pomeau, Europhys.

Lett. 27:377–382 (1994).
3. L. Landau and E. Lifshitz, The Classical Theory of Fields (Addison–Wesley, New York,

1951).
4. Y. Pomeau, C.R. Physique 3:1269–1271 (2002).
5. See for instance problem 3.72 in V. V. Batygin and I. N. Toptygin Problems in Electrody-

namics (Academic Press, London, 1978).
6. T. H. Boyer, Ann. Phys. 56:474 (1970).
7. D. Roberts and Y. Pomeau Irreversible Casimir-like Drag in a Bose–Einstein Condensate,

forth coming.
8. An anonymous referee pointed out that the rotating bucket of Newton made an history

of its own. Specifically Newton’s argument was reconsidered (and seemingly criticized) by
E. Mach. It inspired at least in part Einstein when building his theory of General Rela-
tivity. This history can be found in the preprint by Lars Rosenberger: “Das Problem der
Rotation in der Allgemeinen Relativitaetstheorie” Max Planck Inst. for the History of the
Sciences, Berlin, preprint nr. 208.
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